Optimality Conditions and Characterizations of the Solution Sets in Generalized Convex Problems and Variational Inequalities
نویسنده
چکیده
We derive necessary and sufficient conditions for optimality of a problem with a pseudoconvex objective function, provided that a finite number of solutions are known. In particular, we obtain that the gradient of the objective function at every minimizer is a product of some positive function and the gradient of the objective function at another fixed minimizer. We apply this condition to provide several complete characterizations of the solution sets of set-constrained and inequality-constrained nonlinear programming problems with pseudoconvex and second-order pseudoconvex objective functions in terms of a known solution. Additionally, we characterize the solution sets of the Stampacchia and Minty variational inequalities with a pseudomonotone-star map, provided that some solution is known.
منابع مشابه
Sequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملPseudoconvex Multiobjective Continuous-time Problems and Vector Variational Inequalities
In this paper, the concept of pseudoconvexity and quasiconvexity for continuous~-time functions are studied and an equivalence condition for pseudoconvexity is obtained. Moreover, under pseudoconvexity assumptions, some relationships between Minty and Stampacchia vector variational inequalities and continuous-time programming problems are presented. Finally, some characterizations of the soluti...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملAn Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method
The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...
متن کاملSecond-Order Analysis of Polyhedral Systems in Finite and Infinite Dimensions with Applications to Robust Stability of Variational Inequalities
This paper concerns second-order analysis for a remarkable class of variational systems in finite-dimensional and infinite-dimensional spaces, which is particularly important for the study of optimization and equilibrium problems with equilibrium constraints. Systems of this type are described via variational inequalities over polyhedral convex sets and allow us to provide a comprehensive local...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Optimization Theory and Applications
دوره 158 شماره
صفحات -
تاریخ انتشار 2013